Search results for "Biochemical Simulations"

showing 6 items of 6 documents

Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE

2017

17 p.-8 fig.

0301 basic medicineProtein ConformationDimerlcsh:MedicineMolecular DynamicsCrystallography X-RayPhysical ChemistryBiochemistryDEAD-box RNA HelicasesMolecular dynamicschemistry.chemical_compoundComputational ChemistryNucleophileBiochemical Simulationslcsh:ScienceMultidisciplinaryCrystallographyChemistryOrganic CompoundsPhysicsEscherichia coli ProteinsCondensed Matter Physics3. Good healthPhysical sciencesChemistryCarbon-Sulfur LyasesBiochemistryCrystal StructureResearch ArticleChemical ElementsProtein subunitChemical physicschemistry.chemical_elementOxidative phosphorylationMolecular Dynamics Simulation03 medical and health sciencesThiolsEscherichia coliSolid State PhysicsProtein Interaction Domains and MotifsChemical BondingOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesComputational BiologyDimers (Chemical physics)Hydrogen BondingCell BiologySulfurAcceptorRedox sensitiveOxidative Stress030104 developmental biologyBiophysicslcsh:QProtein MultimerizationSulfur
researchProduct

Distant Homology Modeling of LCAT and Its Validation through In Silico Targeting and In Vitro and In Vivo Assays

2013

LCAT (lecithin:cholesterol acyltransferase) catalyzes the transacylation of a fatty acid of lecithin to cholesterol, generating a cholesteryl ester and lysolecithin. The knowledge of LCAT atomic structure and the identification of the amino acids relevant in controlling its structure and function are expected to be very helpful to understand the enzyme catalytic mechanism, as involved in HDL cholesterol metabolism. However - after an early report in the late '90 s - no recent advance has been made about LCAT three-dimensional structure. In this paper, we propose an LCAT atomistic model, built following the most up-to-date molecular modeling approaches, and exploiting newly solved crystallog…

MaleModels MolecularProtein StructureDrug Research and DevelopmentProtein Conformationlcsh:MedicineBiologyBiochemistryCatalysisSubstrate SpecificityPhosphatidylcholine-Sterol O-AcyltransferaseMicechemistry.chemical_compoundEnzyme activatorTransacylationProtein structureDrug DiscoveryHydrolaseCatalytic triadBiochemical SimulationsMedicine and Health SciencesAnimalsHumansHomology modelingBiomacromolecule-Ligand Interactionslcsh:SciencePharmacologyBinding SitesPlasma ProteinsMultidisciplinarylcsh:RBiology and Life SciencesProteinsEnzyme structureEnzyme ActivationMolecular Docking SimulationchemistryBiochemistryMutationEnzyme StructureEnzymologyBiocatalysisCholesteryl esterlcsh:QResearch ArticleBiotechnologyPLoS ONE
researchProduct

A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation

2015

International audience; Nicotinic acetylcholine receptors (nAchRs) are ligand-gated ion channels that regulate chemical transmission at the neuromuscular junction. Structural information is available at low resolution from open and closed forms of an eukaryotic receptor, and at high resolution from other members of the same structural family, two prokaryotic orthologs and an eukary- otic GluCl channel. Structures of human channels however are still lacking. Homology modeling and Molecular Dynamics simulations are valuable tools to predict structures of unknown proteins, however, for the case of human nAchRs, they have been unsuccessful in providing a stable open structure so far. This is du…

Models MolecularHydrogen bondingalpha7 Nicotinic Acetylcholine ReceptorProtein ConformationMolecular Sequence DataMESH: Sequence Alignmentligand gated ion channles molecular dynamics simulation epibatidine waterlcsh:MedicineSequence alignmentMESH: Amino Acid SequenceMolecular Dynamics SimulationMESH: Models Molecular*Molecular dynamicsProtein structureSequence alignmentCationsHumansMESH: Molecular Dynamics SimulationHomology modelingAmino Acid SequenceNicotinic Receptorlcsh:ScienceBiochemical simulationsIon channelAcetylcholine receptorIonsMESH: Protein Conformation*MultidisciplinaryMESH: HumansMESH: Molecular Sequence DataChemistryMESH: Protein Multimerizationlcsh:RMESH: alpha7 Nicotinic Acetylcholine Receptor/chemistry*[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]Transmembrane proteinSimulation and modelingNicotinic agonistBiochemistryBiophysicsProtein structurelcsh:QProtein MultimerizationResearch ArticleStructural Model
researchProduct

Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics.

2014

Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both confo…

Nicotinic Acetylcholine ReceptorsProtein ConformationGatingMolecular DynamicsLigandsBiochemistryBiophysics SimulationsIon ChannelsMolecular dynamicsAcetylcholine bindingComputational ChemistryBiochemical SimulationsNicotinic AgonistsBiomacromolecule-Ligand InteractionsBiochemistry SimulationsMultidisciplinaryHydrogen bondChemistryPhysicsQTemperatureRLigand (biochemistry)nicotinic receptor molecular dynamics tamd acethylcholine binding proteinChemistryNicotinic agonistBiochemistryMedicineBiophysic Al SimulationsResearch ArticleProtein BindingProtein subunitScienceBiophysicsMolecular Dynamics SimulationProtein ChemistryStatistical MechanicsChemical BiologyAnimalsBiologyAcetylcholine receptorBinding SitesProteinsComputational BiologyHydrogen BondingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Protein SubunitsMolluscaAcetylcholine ReceptorsBiophysicsLobelineCarrier ProteinsPLoS ONE
researchProduct

A Monte Carlo Study of Knots in Long Double-Stranded DNA Chains.

2016

We determine knotting probabilities and typical sizes of knots in double-stranded DNA for chains of up to half a million base pairs with computer simulations of a coarse-grained bead-stick model: Single trefoil knots and composite knots which include at least one trefoil as a prime factor are shown to be common in DNA chains exceeding 250,000 base pairs, assuming physiologically relevant salt conditions. The analysis is motivated by the emergence of DNA nanopore sequencing technology, as knots are a potential cause of erroneous nucleotide reads in nanopore sequencing devices and may severely limit read lengths in the foreseeable future. Even though our coarse-grained model is only based on …

PolymersMaterials by StructureMolecular biologyMaterials ScienceElectrophoretic techniquesDNA electrophoresisNucleotide SequencingMolecular Dynamics SimulationBiochemistryNanoporesSequencing techniquesMathematical and Statistical Techniquesstomatognathic systemGeneticsBiochemical SimulationsNanotechnologyDNA sequencingMaterials by AttributeNanomaterialsQuantitative Biology::BiomoleculesBiology and life sciencesMathematical Modelsfood and beveragesComputational BiologyDNAPolymer ChemistryMathematics::Geometric TopologyResearch and analysis methodsNucleic acidsChemistrysurgical procedures operativeMolecular biology techniquesMacromoleculesRandom WalkPhysical SciencesNucleic Acid ConformationEngineering and TechnologyMonte Carlo MethodResearch ArticlePLoS computational biology
researchProduct

Missing value imputation in proximity extension assay-based targeted proteomics data

2020

Targeted proteomics utilizing antibody-based proximity extension assays provides sensitive and highly specific quantifications of plasma protein levels. Multivariate analysis of this data is hampered by frequent missing values (random or left censored), calling for imputation approaches. While appropriate missing-value imputation methods exist, benchmarks of their performance in targeted proteomics data are lacking. Here, we assessed the performance of two methods for imputation of values missing completely at random, the previously top-benchmarked ‘missForest’ and the recently published ‘GSimp’ method. Evaluation was accomplished by comparing imputed with remeasured relative concentrations…

ProteomicsMaleMultivariate analysisProtein ExpressionBiochemistryProtein expressionDatabase and Informatics MethodsLimit of DetectionStatisticsMedicine and Health SciencesBiochemical SimulationsImputation (statistics)Immune ResponseMathematicsMultidisciplinaryProteomic DatabasesQREukaryotaBlood ProteinsVenous ThromboembolismPlantsMiddle AgedLegumesTargeted proteomicssymbolsEngineering and TechnologyMedicineFemaleAlgorithmsResearch ArticleQuality ControlAdultScienceImmunologyResearch and Analysis Methodssymbols.namesakeSigns and SymptomsBiasIndustrial EngineeringProtein Concentration AssaysGene Expression and Vector TechniquesMissing value imputationHumansMolecular Biology TechniquesMolecular BiologyAgedInflammationMolecular Biology Assays and Analysis TechniquesInterleukin-6OrganismsPeasBiology and Life SciencesComputational BiologyMissing dataPearson product-moment correlation coefficientBiological DatabasesMultivariate AnalysisClinical MedicineVenous thromboembolismPLOS ONE
researchProduct